Highly-photostable and mechanically flexible all-organic semiconductor lasers

نویسندگان

  • C. Foucher
  • B. Guilhabert
  • A. L. Kanibolotsky
  • P. J. Skabara
  • N. Laurand
  • M. D. Dawson
چکیده

Two formats of all-organic distributed-feedback lasers with improved photostability, respectively called nanocomposite and encapsulated lasers, are reported. These lasers are compatible with mechanically-flexible platforms and were entirely fabricated using softlithography and spin-coating techniques. The gain elements in both types of lasers were monodisperse π-conjugated star-shaped macromolecules (oligofluorene truxene, T3). In the nanocomposites lasers, these elements were incorporated into a transparent polyimide matrix, while in the encapsulated devices a neat layer of T3 was overcoated with Poly(vinyl alcohol) (PVA). The T3-nanocomposite devices demonstrated a 1/e degradation energy dosage up to ~27.0 ± 6.5 J/cm with a threshold fluence of 115 ± 10 μJ/cm. This represents a 3-fold improvement in operation lifetime under ambient conditions compared to the equivalent laser made with neat organic films, albeit with a 1.6-time increase in threshold. The PVA-encapsulated lasers showed the best overall performance: a 40-time improvement in the operation lifetime and crucially no-trade-off on the threshold, with respectively a degradation energy dosage of ~280 ± 20 J/cm and a threshold fluence of 36 ± 8 μJ/cm. © 2013 Optical Society of America OCIS codes: (140.3460) Lasers; (160.4890) Organic materials. References and links 1. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007). 2. P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. 23(7), 869–872 (2011). 3. B. Wenger, N. Tétreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010). 4. S. Riechel, U. Lemmer, J. Feldmann, T. Benstem, W. Kowalsky, U. Scherf, A. Gombert, and V. Wittwer, “Laser modes in organic solid-state distributed feedback lasers,” Appl. Phys. B 71(6), 897–900 (2000). 5. K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(Part 2, No. 3A), L249–L251 (2003). 6. M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004). 7. B. Guilhabert, D. Massoubre, E. Richardson, J. J. D. McKendry, G. Valentine, R. K. Henderson, I. M. Watson, E. Gu, and M. D. Dawson, “Sub-micron lithography using InGaN micro-LEDs: mask-free fabrication of LED arrays,” IEEE Photon. Technol. Lett. 24(24), 2221–2224 (2012). 8. J. Herrnsdorf, B. Guilhabert, Y. Chen, A. Kanibolotsky, A. Mackintosh, R. Pethrick, P. Skabara, E. Gu, N. Laurand, and M. Dawson, “Flexible blue-emitting encapsulated organic semiconductor DFB laser,” Opt. Express 18(25), 25535–25545 (2010). 9. S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett. 99(2), 023307 (2011). 10. A. Camposeo, P. Del Carro, L. Persano, and D. Pisignano, “Electrically tunable organic distributed feedback lasers embedding nonlinear optical molecules,” Adv. Mater. 24(35), OP221–OP225 (2012). #186104 $15.00 USD Received 4 Mar 2013; revised 2 Apr 2013; accepted 2 Apr 2013; published 10 Apr 2013 (C) 2013 OSA1 May 2013 | Vol. 3, No. 5 | DOI:10.1364/OME.3.000584 | OPTICAL MATERIALS EXPRESS 584 11. M. H. Song, B. Wenger, and R. H. Friend, “Tuning the wavelength of lasing emission in organic semiconducting laser by the orientation of liquid crystalline conjugated polymer,” Appl. Phys. Lett. 104(3), 033107 (2008). 12. S. Chénais and S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012). 13. Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: a polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008). 14. T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88(24), 241116 (2006). 15. A. E. Vasdekis, G. Tsiminis, J. C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express 14(20), 9211–9216 (2006). 16. N. Grassie, and G. Scott, Polymer Degradation and Stabilisation (Cambridge University Press, 1985). 17. W. Zhao, T. Cao, and J. M. White, “On the origin of green emission in polyfluorene polymers: the roles of thermal oxidation degradation and crosslinking,” Adv. Funct. Mater. 14(8), 783–790 (2004). 18. L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y-Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22(18), 8938–8947 (2012). 19. S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, “Improved operational lifetime of semiconducting polymer lasers by encapsulation,” Appl. Phys. Lett. 91(26), 261104 (2007). 20. J. Buseman-Williams, K. D. Frischknecht, M. D. Hubert, A. K. Saafir, and J. D. Tremel, “Flat-plate encapsulation solution for OLED displays using a printed getter,” J. Soc. Inf. Disp. 15(2), 103–112 (2007). 21. A. L. Kanibolotsky, R. Berridge, P. J. Skabara, I. F. Perepichka, D. D. Bradley, and M. Koeberg, “Synthesis and properties of monodisperse oligofluorene-functionalized truxenes: highly fluorescent star-shaped architectures,” J. Am. Chem. Soc. 126(42), 13695–13702 (2004). 22. G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “Low-threshold organic laser based on an oligofluorene truxene with low optical losses,” Appl. Phys. Lett. 94(24), 243304 (2009). 23. http://www.mantechmaterials.com/products.asp. 24. L. Cerdán, A. Costela, I. García-Moreno, O. García, R. Sastre, M. Calle, D. Muñoz, and J. de Abajo, “High-gain long-lived amplified spontaneous emission from dye-doped fluorinated polyimide planar waveguides,” Macromol. Chem. Phys. 210(19), 1624–1631 (2009). 25. J. G. Pritchard, Poly (vinyl alcohol): Basic Properties and Uses (Gordon and Breach, 1970). 26. P. V. Adhyapak, N. Singh, A. Vijayan, R. C. Aiyer, and P. K. Khanna, “Single mode waveguide properties of m-NA doped Au/PVA nano-composites: synthesis, characterization and studies,” Mater. Lett. 61(16), 3456– 3461 (2007). 27. M. M. W. Muscatello and S. A. Asher, “Poly (vinyl alcohol) rehydratable photonic crystal sensor materials,” Adv. Funct. Mater. 18(8), 1186–1193 (2008). 28. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012). 29. O. G. Abdullah and D. R. Saber, “Optical absorption of polyvinyl alcohol films doped with nickel chloride,” Appl. Mech. Mater. 110-116, 177–182 (2011). 30. J. Gaume, P. Wong-Wah-Chung, A. Rivaton, S. Thérias, and J.-L. Gardette, “Photochemical behavior of PVA as an oxygen-barrier polymer for solar cell encapsulation,” RSC Adv. 1(8), 1471–1481 (2011). 31. J. Brandrup, E. H. Immergut, and E. A. Grulke, Polymer Handbook (Wiley, 1999). 32. J. Chilwell and I. Hodgkinson, “Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides,” J. Opt. Soc. Am. 1(7), 742–753 (1984). 33. S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett. 26(9), 593–595 (2001). 34. M. Lu, B. T. Cunningham, S.-J. Park, and J. G. Eden, “Vertically emitting, dye-doped polymer laser in the green (λ ~536 nm) with a second order distributed feedback grating fabricated by replica molding,” Opt. Commun. 281(11), 3159–3162 (2008).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon-bridged oligo(p-phenylenevinylene)s for photostable and broadly tunable, solution-processable thin film organic lasers

Thin film organic lasers represent a new generation of inexpensive, mechanically flexible devices for spectroscopy, optical communications and sensing. For this purpose, it is desired to develop highly efficient, stable, wavelength-tunable and solution-processable organic laser materials. Here we report that carbon-bridged oligo(p-phenylenevinylene)s serve as optimal materials combining all the...

متن کامل

Organic semiconductor lasers with two-dimensional distributed feedback

Photograph of a mechanically flexible 2D-DFB laser made from the conjugated polymer MeLPPP. The laser is optically pumped well above the threshold for amplified spontaneous emission. The complex far-field emission pattern (blue-green) results from a large detuning between the resonance wavelength and the gain maximum. • A nearly diffraction limited surface emitting conjugated polymer laser util...

متن کامل

Diode-pumped, mechanically-flexible polymer DFB laser encapsulated by glass membranes.

A diode-pumped, mechanically-flexible organic distributed-feedback laser that is fully encapsulated with ultra-thin glass is reported. The organic laser is excited by 450 nm laser diode and emits at 537 nm with an oscillation threshold of 290 W/cm². The encapsulation format of the device results in a photostability that is improved by two orders of magnitude compared to a non-encapsulated refer...

متن کامل

Highly photostable solid-state dye lasers based on silicon-modified organic matrices

We report on the synthesis, characterization, and physical properties of modified polymeric matrices incorporating silicon atoms in their structure and doped with laser dyes. When the silicon-modified organic matrices incorporated pyrromethene 567 PM567 and pyrromethene 597 PM597 dyes as actual solid solutions, highly photostable laser operation with reasonable, nonoptimized efficiencies was ob...

متن کامل

Lasing from InGaP quantum dots in a spin-coated flexible microcavity.

We report the realization of a mechanically flexible microcavity laser emitting at 657 nm using spin coating. These optically pumped vertical cavity surface emitting lasers use InGaP colloidal quantum dots as the active medium and alternating polymer layers of different refractive indices as the Bragg mirrors. Results of photoluminescence measurements indicating enhancement in spontaneous emiss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013